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Abstract

The micro-Doppler (m-D) effect appears in the synthetic aperture radar (SAR) /inverse
SAR (ISAR) image of a target whenever the target has one or more rotating or vi-
brating parts. M-D effect introduces distortion in the SAR/ISAR images. On the
other hand, m-D effect also carries information about the features of moving parts of a
stationary or moving target that can be used for target identification purpose. Based
on L-statistics, spectrogram, and inverse Radon transform, a radar data exploitation
Matlab toolbox was develped for classifying air, land and ocean targets, which helps
Geospatial Intelligence (GEOINT) support to Canadian Forces. This toolbox will
scan and search any M-D activity in the desired area of the SAR/ISAR image. The
toolbox has three options; 1) Focus the stationary target if there is no m-D, 2) Focus
the target after removing the m-D, and 3) extract the m-D and determine the motion
parameters. The toolbox was tested and validated against a variety of simulated and
measured targets.

Significance for defence and security

The micro-Doppler (m-D) effect appears in the synthetic aperture radar (SAR) image
of a target whenever the target has one or more rotating or vibrating parts. Similar
effect appears in the inverse synthetic aperture radar (ISAR) imaging, as well. If the
frequency modulations on the returned signal caused by the moving parts are not
filtered, then the m-D effect can introduce distortion in the SAR/ISAR images. The
frequency content of the m-D signal changes over time in a wide range. Therefore,
the m-D may cover the rigid body and make it difficult to detect. On the other hand,
the m-D effect also carries useful information about the features of moving parts of a
target (type, velocity, size, etc.) that are complementary to existing target recognition
methods. It is easier to estimate these features if the m-D effect is separated from
the rigid body part of the radar image. Thus, the extraction of m-D effects from
the radar images have attracted significant research attention, especially the image
enhancement and m-D extraction for the spacebourse sensors such as RADARSAT-2
and TerraSAR-X.

Based on L-statistics, spectrogram, and inverse Radon transform, a radar data ex-
ploitation Matlab toolbox was develped for classifying air and land targets. This
toolbox will scan and search any m-D activity in the desired area of the SAR/ISAR
image. The toolbox has three options; 1) Focus the stationary target if there is no m-
D, 2) Focus the target after removing the m-D, and 3) extract the m-D and determine
the motion parameters such as rotation/vibration rate, initial phase, and amplitude
of the stationary and moving targets. The toolbox was tested and validated against
a variety of simulated and measured targets.
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The m-D toolbox can be used to identify important classes of battlefield targets.
The m-D signatures of vibrating and rotating structures can be used to differenti-
ate and identify specific types of military vehicles/tanks/trucks and determine their
movement and the speed of their engines. This approach could provide improved
target signature/feature recognition over current audio classification techniques. In
addition to battlefield land targets, important classes of air and ocean targets can
also be distinguished by their m-D signatures, for example, radar signals returned
from military targets that incorporate vibrating or rotating structures such as air-
craft propellers, helicopter rotors, rotating antennas on a ship or an aircraft contains
m-D signatures related to these structures. One of the important applications of
the m-D is the detection of a hovering helicopter by hub radar returns through m-D
features rather than the blade flash returns, which is currently used by conventional
scanning radars. Radar returns from the engine compressor and blade assemblies of
a jet aircraft contain jet engine modulation that also generates m-D. Hence the m-D
toolbox offers a new way for the analysis of military target signatures. It provides
additional and unique target features that are complementary to those made available
by existing methods. The toolbox will be available to the CFJIC (Canadian Forces
Joint Imagery Centre) and MCE (Mapping and Charting Establishment) clients for
Geospatial Intelligence (GEOINT) support.

Radar gait image analysis integrated with m-D can provide new identification meth-
ods for remote detection of walking personnel either in battlefield or urban scenarios.
This technique can be applied to other areas as well: countering terrorism, conduct-
ing urban military operations, providing urban border security, dealing with hostage
acts, intercepting suicide bombers, and detecting humans (soldiers) in a forest. Dis-
tance is the key factor, because terrorists and other criminals often act from afar,
and the earlier detection means a quicker response. Therefore, as a new identi-
fication /recognition tool for operational radar Automatic Gait Recognition (AGR)
system, m-D has the good potential for significantly improving military capabilities
and protection for CF and CF facilities.

ii DRDC-RDDC-2014-R6



Résumé

L’effet micro-Doppler (m-D) apparait dans I’image d’un radar a synthése d’ouverture
(SAR) ou d’un radar a synthése d’ouverture inverse (ISAR) d’une cible qui comporte au
moins une piéce tournante ou vibrante. L’effet m-D introduit de la distorsion dans les
images SAR ou ISAR. Par contre, cet effet fournit aussi des renseignements sur les
caractéristiques des pieces mobiles d’une cible fixe ou en mouvement, renseignements qui
peuvent servir a identifier la cible. A partir des statistiques linéaires, du spectrogramme et
de la transformée inverse de Radon, une boite a outils Matlab d’exploitation des données
radar a été mise au point pour classer les cibles aériennes, terrestres et océaniques afin
d’aider au soutien du renseignement géospatial (GEOINT) des Forces canadiennes. Cette
boite a outils balaie la zone désirée de ’image SAR ou ISAR a la recherche d’activités m-
D. Elle comporte trois options : 1) la focalisation de la cible fixe en 1’absence de m-D; 2)
la focalisation de la cible aprés I’élimination des m-D; 3) I’extraction des m-D et la
détermination des paramétres de mouvement. Elle a en outre été mise a 1’essai et validée
en fonction de diverses cibles simulées et mesurées.

Importance pour la défense et la sécurité

L’effet micro-Doppler (m-D) apparait dans 1’image d’un radar a synthése d’ouverture
(SAR) d’une cible qui comporte au moins une picce tournante ou vibrante. Un effet
similaire apparait aussi dans I’image d’un radar a syntheése d’ouverture inverse (ISAR). Si
les modulations de fréquence sur les signaux réfléchis causés par les pieces mobiles ne
sont pas filtrées, I’effet m-D peut introduire des distorsions dans les images SAR ou
ISAR. De plus, le contenu fréquentiel du signal m-D varie en fonction du temps sur une
large gamme de fréquences. En conséquence, 1’effet m-D peut couvrir un corps rigide et le
rendre difficile a détecter. Par contre, il contient aussi des renseignements utiles sur les
caractéristiques des picces mobiles d’une cible (type, vitesse, dimensions, etc.),
renseignements qui sont complémentaires aux méthodes existantes de reconnaissance de
cibles. Ces caractéristiques sont plus faciles a évaluer si I’effet m-D est séparé de la partie
rigide de la cible dans I’image radar. L’extraction des effets m-D des images radar fait
donc I’objet de beaucoup de recherches, surtout relativement a I’amélioration des images et
a I’extraction des m-D pour les capteurs spatiaux comme RADARSAT-2 et TerraSAR-X.

A partir des statistiques linéaires, du spectrogramme et de la transformée inverse de
Radon, une boite a outils Matlab d’exploitation des données radar a été¢ mise au point pour
classer les cibles aériennes et terrestres. Cette boite a outils balaie la zone désirée de
I’image SAR ou ISAR a la recherche d’activités m-D. Elle comporte trois options : 1) la
focalisation de la cible fixe en I’absence de m-D; 2) la focalisation de la cible apres le
retrait des m-D; 3) I’extraction des m-D et la détermination des parametres de mouvement
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comme la vitesse de rotation et de vibration, la phase initiale et I’amplitude des cibles
fixes et mobiles. Elle a en outre été¢ mise a I’essai et validée en fonction de diverses cibles
simulées et mesurées. La boite a outils m-D peut étre utilisée pour identifier des classes
importantes de cibles sur le champ de bataille. Les signatures m-D de structures vibrantes
et tournantes peuvent servir a différencier et a identifier des types particuliers de véhicules,
de chars et de camions militaires,

ainsi qu’a déterminer leur mouvement et la vitesse de leurs moteurs. Par rapport aux
techniques actuelles de classification audio, cette méthode pourrait améliorer la
reconnaissance de la signature et des caractéristiques d’une cible. En plus des cibles
terrestres sur les champs de bataille, des classes importantes de cibles aériennes et
océaniques peuvent aussi étre distinguées au moyen de leurs signatures m-D. Les signaux
radar renvoyés par des cibles militaires dotées de structures vibrantes et tournantes,
comme les hélices d’aéronef, les rotors d’hélicoptére et les antennes rotatives d’un navire
ou d’un aéronef, comportent des signatures m-D associées a ces structures. Une
application importante de ’effet m-D est la détection d’un hélicoptere en vol stationnaire
par les échos radar du moyeu de rotor au moyen de leurs caractéristiques m-D plutot que
par les éclairs de pales qu’utilisent aujourd’hui les radars a balayage traditionnels. Les
échos radar provenant des aubes et du compresseur de moteur d’un avion a réaction
contiennent une modulation qui produit aussi des effets m-D. Par conséquent, la boite a
outils pour m-D offre une nouvelle méthode d’analyse des signatures de cibles militaires.
Elle fournit en outre des caractéristiques de cibles supplémentaires et uniques qui sont
complémentaires a celles produites par les méthodes actuelles. Elle sera offerte aux clients
du Centre d’imagerie interarmées des Forces canadiennes (CIIFC) et du Service de
cartographie (S Carto) aux fins de soutien du renseignement géospatial (GEOINT).

L’intégration de 1’analyse de la démarche dans les images radar et de 1’effet m-D fournit de
nouvelles méthodes d’identification pour la détection a distance de marcheurs dans des
scénarios de bataille ou des scénarios urbains. Cette technique peut aussi s’appliquer a
d’autres domaines : lutte contre le terrorisme, conduite d’opérations militaires en zone
urbaine, prestation de services de sécurité¢ a la frontiére en zone urbaine, interventions
dans les situations de prise d’otages, interception de bombes humaines et détection d’étres
humains (soldats) en forét. La distance constitue un facteur clé, car les terroristes et les
autres criminels agissent souvent de loin, et une détection plus précoce permet une réponse
plus rapide. Par conséquent, en tant que nouvel outil d’identification et de reconnaissance
pour le systeme opérationnel de reconnaissance automatique de la démarche (AGR), I’effet
m-D peut améliorer de fagon considérable les capacités militaires et la protection pour les
Forces canadiennes et leurs installations.
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1 Introduction

If a target or any structure on a target has mechanical vibration or rotation in addi-
tion to its bulk translation, it might induce a frequency modulation on the returned
signal that generates sidebands about the target’s Doppler frequency shift. This is
called the micro-Doppler (m-D) effect [1-10]. Radar signals returned from a target
that incorporates vibrating or rotating structures, such as propellers of a fixed-wing
aircraft, rotors of a helicopter, or the engine compressor and blade assemblies of a jet
aircraft, contain m-D characteristics related to these structures [1,2,5,9]. The m-D
effect enables us to determine the dynamic properties of the target and it offers a new
approach for the analysis of target signatures.

Micro-Doppler effect appears in the SAR/ISAR image of a target whenever the target
has one or more rotating or vibrating parts. If the frequency modulations on the
returned signal caused by the moving parts are not filtered, then the m-D effect can
introduce distortion in the SAR/ISAR images [1,2,5,9]. The observation of very large
distortions from experimental SAR/ISAR data has been reported. On the other hand,
the m-D effect also carries information about the features of moving parts of a target
that are complementary to existing target recognition methods. Several papers have
been written about the ways to deal with the m-D effect. The wavelet analysis of the
helicopter and human data, along with the time-frequency (TF) representation based
imaging system, is presented in [1,2]. Details on the physics of the m-D effect, with
some typical examples, are given in [1-9]. A method for separating the m-D effect
from the radar image, based on the chirplet transform, is proposed in [2,10]. It is
easier to estimate these features if the m-D effect is separated from the rigid body
part of the radar image. Thus, the extraction of m-D effects is an important problem
in the radar imaging. Since the spectral content of the signal corresponding to m-D
effects is time-varying, time-frequency (TF) analysis techniques are an appropriate
tool for the m-D features analysis and extraction [1-28].

The most common and simplest form of the signal that corresponds to the m-D effect
is a sinusoidal frequency-modulated (FM) signal. This kind of the m-D signatures can
be extracted based on the inverse Radon transform of its TFR [5]. This transform
projects a two-dimensional (2D) sinusoidal signature into a single point whose position
corresponds to the parameters of the sinusoidal signature. The technique based on the
inverse Radon transform can be used for other nonsinusoidal periodic m-D forms. In
general, the m-D effect, as a nonstationary signal with time-varying spectral content,
can be separated from the rigid body by using the L-statistics on the TF signal
representations [5]. The L-statistics based separation of the m-D effects from the
rigid body is very efficient and simple for any m-D form. The Viterbi algorithm can
improve the m-D tracking in high noise environments [4].

DRDC-RDDC-2014-R6 1



In Section 2, a method for the estimation of m-D motion parameters is provided.
In this section, the inverse Radon transform is reviewed and the methodology is

provided for m-D motion parameters estimation. Its application to the cases, with a
fraction of period of the m-D signal being available, is presented. Since, the m-D is
not necessary of the form of a sinusoidal frequency modulated (FM) signal, a simple
algorithm for period estimation of a general form of the periodic signals is presented
in this Section, as well. The m-D must be separated from a rigid body in order to
be further analyzed, thus the L-statistics based algorithm for the m-D separation is
presented in Section 3. The m-D toolbox based on L-statistics, spectrogram, and
inverse Radon transform is given in Section 4. This toolbox will scan and search any
m-D activity in the desired area of the SAR/ISAR image. The toolbox will have three
options; 1) Focus the stationary target if there is no m-D, 2) Focus the target after
removing the m-D, and 3) extract the m-D and determine the motion parameters
such as rotation/vibration rate, initial phase, and amplitude of the stationary and
moving targets. The toolbox was tested and validated against a variety of simulated
and measured targets. In Section 4, the time-frequency toolbox is also illustrated.
Conclusions are given in Section 5.

2 Estimation of micro-Doppler motion
parameters

The m-D can be used to determine properties of a target [1-28], since the m-D para-
meters are related to the parameters of the corresponding micro-motions. Therefore,
the radar m-D signatures are of a great potential for identifying properties of un-

known targets. The most common form of the m-D is a form of sinusoidal frequency
modulated (FM) signal.

Sinusoidally modulated signals appear in many applications, like in radars and com-
munications. In the radar signal processing, the fast rotating, vibrating or oscillating
parts reflect a signal causing m-D effect in a form of sinusoidally modulated signal.
In practice it is very important to extract, decompose, and estimate parameters of
these kinds of signals, since they are easily related to the physical dimensions and
other properties of the moving objects.

In this section, we will present a method for analysis of sinusoidally modulated com-
ponents based on the inverse Radon transform of signal’s time-frequency represent-
ation. The Radon transform, widely used in computer imaging applications, is also
used in time-frequency for projecting Wigner distribution in order to detect linear
frequency modulated signals [33-37]. Here, we will use the inverse Radon transform
rather than the Radon transform. Note, that the behavior of the direct and inverse
Radon transform is completely different, in contrast, for example, to the Fourier
transform [38]. Since the Radon transform of a two-dimensional signal containing

2 DRDC-RDDC-2014-R6



a two-dimensional delta function is a sinusoidal pattern with amplitude correspond-
ing to the distance of the point from the origin and the initial phase corresponding
to the phase of the point position, then it is obvious that a sinusoidal pattern in
the time-frequency plane (produced by a time-frequency representation of sinusoid-
ally modulated signal) will project to a two-dimensional delta in the inverse Radon
transform. This is obviously an optimal transform for a two-dimensional sinusoidal
pattern, since all signal energy from the time-frequency domain will be projected in a
single point in the inverse Radon transform domain. The method will be introduced
on monocomponent sinusoidally modulated signal. Then it will be extended to noisy
and multicomponent signals that include one or more sinusoidal patterns. Finally the
method will be applied to periodic and non-periodic patterns that are not produced
by a sinusoidally modulated signals at all. The examples illustrate the efficiency of
the presented method.

2.1 Radon and inverse Radon transform

A projection of a two-dimensional function f(z,y) onto the z-axis is

[e.e]

Ry(x) = / F (. 9)dy. 1)

A rotated version of a two-dimensional signal may be described in a rotated coordinate
system, by a coordinate rotation transform. For an angle «, it reads

] = [ iomer s ) [2].

The projection of a function f(z,y) onto &, with a varying rotation angle «, is the
Radon transform of the signal f(z,y)

[e.e]

Ry(€,a) = / F(6,Q)dC = / / FLOB(A — E)dAdC. 2)

—00 —O0

Let us consider simple setup where the analyzed image is two-dimensional delta func-
tion located at the point f(x,y) = é(x — x9)d(y — yo) in z,y domain. Projection of
f(x,y) onto z axis is

Ry(x,0) = / f(@.y)dy = 5z — z0).
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For an arbitrary direction &, = z( cos(a) + yo sin(«), ¢, = —xo sin(a) + yo cos(a), the
function f(&,¢) = §(& —&y)d(¢ — () results in the Radon transform

Ry(E.0) = / F(E.0)dC = 5(€ — &)

= 0(£ — (zgcos(a) + yo sin(w))). (3)

Note that this is a sinusoidal pattern in a two-dimensional (£, «) domain, with the
amplitude /23 + y2 and the phase ¢ = arctan(yo/zo). Of course, the Radon trans-
form is periodic in @ with 27. Projections for 0 < a < 7 are sufficient to calculate
all transform values. By knowing all the projections, for 0 < o < 7, we can calculate
the two-dimensional Fourier transform of f(z,y). It means that we can reconstruct
a two-dimensional function f(z,y) from its projections or integrals (basic theorem
for computed tomography). The inverse Radon transform may be calculated in the
Fourier domain or by projecting back the Radon transform (back-projection method).
Thus, a point in the (z,y) domain transforms to a sinusoidal pattern in Radon trans-
form domain. It means that a sinusoidal pattern will be transformed into a point
by using the inverse Radon transform (IRT). When all energy is concentrated into a
point, then its parameters estimation is very robust and reliable.

2.2 Parameters estimation

Let us now consider sinusoidally frequency modulated signal

Am
x(t) = A, exp (jf— sin(27 fit + Hm)> : (4)

m

It is known that a time-frequency representation 7'(¢,w) of a given signal concentrate
the signal energy along the signal instantaneous frequency

wi(t) = 2mA,, cos(2m fut + 01)

i.e., this signal in (¢, w) plane is presented as sinusoidal pattern image (with more or
less deviations depending on the time-frequency representation used to transform the
signal into time-frequency domain). If we change the time coordinate with ¢ = 27 f,,,¢
then, from the previous section we can conclude that the IRT of the obtained image
T(p/(27 fr),w) reduces to single point where distance from origin correspond to
modulation parameter A,, and the angle of the point is equal to 6,,. In this way, we
can accurately estimate modulation parameters A,, and 6,,.

The modulation parameter f,, can be estimated in the following way. Let us introduce
coordinate change from t to ¢ as ¢ = at where « is a parameter. Now we can vary
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the parameter oo within some range of possible values and search for the value & that
produces single point IRT. In that case we know that & = 27 f,,, and we can estimate
the modulation parameter f,,. In this procedure, it is needed to find the value of «
when the IRT reduces to a single point within the considered domain. This mean
that the IRT is ideally concentrated and the concentration measures [35] can be used
to detect that we reached &. The range for a should be wide enough to include 27 f,,,.
Its limits could be determined as the minimal and the maximal expected 27 f,,, in the
considered case.

The estimation algorithm is summarized as:

Step 1. Start from a frequency modulated signal z(t) with unknown modulation
parameters. Assume that the modulation frequency satisfies foim < fin < fmaxs
where fiin and fr.c are constants.

Step 2. Calculate the time-frequency representation 7'(t,w) of x(t). Here we can
use any time-frequency representation [8] concentrating the signal energy along the
instantaneous frequency in the time-frequency plane. The result of this step is a
two-dimensional time-frequency image of the considered signal.

Step 3. Consider a set of possible a as M equally spaced values between 27 f,;, and
27 frnax-

Step 4. For each a within the considered set, introduce coordinate change ¢ = at
and calculate the IRT of the image T'(¢/a, w).

Step 5. Calculate the concentration measure p of the obtained IRT for each o and
find & that provide the highest concentration.

Step 6. Estimate the modulation frequency as f,, = &/(2n).

Step 7. Find the position of IRT maximum calculated with a”, i.e., IRT of T'(¢p/a",
w). Denote the detected coordinates as x,, and y,.

Step 8. Estimate the modulation amplitude as

A = /22, +12,.

Step 9. Estimate the modulation phase as 0,, = arctan z—:z

In the case of non-sinusoidally modulated signals, producing non-sinusoidal patterns
in the time-frequency plane, the presented approach will produce the closest sinusoidal
pattern form, as it will be shown in examples.

DRDC-RDDC-2014-R6 5



2.3 Method implementation

We use the spectrogram and the S-method as time-frequency representations in the
algorithm Step 2. The spectrogram is defined as a squared modulus of the short-time
Fourier transform. In the discrete time domain, it reads

SPEC(n,k) = |STFT(n, k)|?
N’UJ
STFT(n,k) = 3 w(m)z(n +m)e %™,

m=0

where w(n) is the analysis window of the length N,,. Along with the spectrogram,
we will use the S-method as a time frequency representation. The discrete S-method
is of the form

SM(n, k) = |STFT(n, k)|?

L
+2Re | Y STFT(n,k+p)STFT*(n,k —p)| ,
p=1

where beside the time-domain window, used in the STF'T calculation, we have a para-
meter L that corresponds to the number of spectrogram correcting terms [8]. It is
known that the S-method can produce highly concentrated time-frequency represent-
ation of a given signal. The S-method is numerically very efficient since there is no
need for signal oversampling. T'wo special cases of the S-method are the spectrogram
(with L = 0) and the pseudo Wigner distribution (with L = N,,/2).

The concentration measure is needed in the algorithm, Step 5. Here we use the
normalized measure

= —M%
o 1/2
M1/2

where MP is defined in [35] as

ME = (;;\Tm,k)\m’)p

and T'(n, k) are the discrete samples of a non-negative part of the IRT.

Example 1: Consider N = 129 samples of noise free FM signal (4) sampled with
t =nAt, At =1/128, n =0,1,... N—1. The signal parameters are A, = 1, f,, = 1.4,
A, = 50 and 6,,, = 30° The spectrogram and the S-method of the considered signal
are presented in Figure 1(a) and (b). The spectrogram is calculated with a 17-point
Hann window, while the S-method is calculated with a 55 point Hann window and
L = 8. In both cases, the time-frequency representation is calculated at each available
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time instant (i.e., with overlapping). The parameter « is varied from 0.2 to 15
with step 0.2. For each «, the IRT along with the corresponding concentration
measure is calculated. The concentration measure p(«) is presented in Figure
1(c) and (d), where the minimum of this measure (i.e., highest concentration) is
depicted by a circle.

Figure 1(e) and (f) present the IRT obtained for & = 8.8. The maximum position in
the IRT is determined and the modulation parameters are estimated in the spectro-
gram case as

fn = 28 14, A,=49.1, 0,, =314

T
and in the S-method case as

. 8.8 . .
fm=—=~14, A, =481, 6, =322°
2m
As we can see in both cases. the modulation parameters are very close to true values.
It means that the method will not be too sensitive with respect to the time-frequency

representation.

The IRT for a = 7 (in the spectrogram case) and o = 10 (in the S-method case) are
given in Figure 1(g) and (h). These subplots illustrate that the IRT for optimal «
(subplots (c) and (d)) is better concentrated than the IRT with another .

Example 2: The estimation procedure is applied to a noisy signal s(nAt) = x(nAt)+
£(n), where the noise €(n) is a complex white Gaussian noise with SNR = 0dB. The
results are presented in Figure 2(a) and (b). The spectrogram of s(n) is presented
in Figure 2(a), while the concentration measure of the IRT, for various «, is given in
Figure 2(b). In the spectrogram calculation, the number of frequency points is
101, i.e., windowed signal is zero-padded prior to the DFT calculation. Based on
the IRT obtained for optimal a (denoted by circle in Figure 2(b)), the modulation
parameters are estimated as
fn = 88 14, A, =491, 6, =302°

27
and the resulting sinusoidal modulation is plotted over the spectrogram with a black
line Figure 2(a). The estimated parameters are very close to the parameters estimated
for noisy free case.

A multicomponent signal composed from a sinusoidally FM component (the same as
in Example 1), a linear FM component, and a constant frequency component,

s(t) = z(t) + 0.6 exp (j407(t — 0.8)%) + 0.6 exp(j50mt)
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Figure 1: Modulation parameters estimation for the mono-component non-noisy si-
nusoidally FM signal. Time frequency representation (a), (b); concentration measure
(c), (d); inverse Radon transform with highest concentration (e), (f) and inverse
Radon transform when the parameter « is not optimally chosen (g), (h).
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Figure 2: Parameter estimation of the noisy signal with SNR, = 0dB (a), (b) and the
multicomponent signal (c), (d). Estimated modulation is plotted with black line over
the spectrogram image.

is considered. The results obtained with the proposed procedure are presented in
Figure 2(c) and (d). Estimated parameters are

A 8.8 A A
fm=—=~14, A, =49.1, 6, =30.2°
2T

From this example, we see that the proposed method is robust to the noise and some
other possible interferences.

2.4 Multicomponent signal analysis

This approach may be generalized to a multicomponent signal

K (k)
Am’ .
z(t) = E A:(Ek) exp (j—f(k) sm(27rf7(f)t + 05,’?)) + (1), (5)
k=1

m

where €(t) denotes disturbing components and noise. T'wo scenarios are possible. One
is that in the application of the previous algorithm, in Step 5, the concentration meas-
ure p of the obtained IRT produces at once several or all K values of o with visible
and distinguishable concentration measure peaks. Then, these values are associated
to the corresponding signal parameters, as in Steps 6-9. However, due to different
amplitudes and different number of periods in the time-frequency plane usually only
the strongest component is visible in the concentration measure. In this case, its
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parameter ¢ is estimated as in Step 5. Other parameters are estimated for this com-
ponent as in Steps 6-9. The strongest component is removed and the algorithm is
used on the remaining signal components, until the energy of the remaining signal is
negligible. After parameters of all components are found, they can be readjusted by
a mean-squared comparison with the original signal.

Example 3: Let us consider a multicomponent noisy signal consisted of K = 3
sinusoidally FM components of the form (5). Signal parameters are:

AM =1, () = 1.4, AD = 50, 6 = 30°,
AP =07, fP =1, AP =357, 0 = —60°,
AP =07, 9 =08, A = 28.6 and 0¥ = 180°.

The proposed method estimates parameters of one component, as presented in Fig-
ure 3(a) and (b). The estimated parameters are
8.8 (1)

fO =22 ~14, AD —488 0

= 29.6°
2T

From Figure 3(a), we can see that estimated modulation parameters highly corres-
pond to the component instantaneous frequency. Now we will filter out the estimated
component.

In the filtering procedure, the original signal is demodulated

A

zq(n) = x(n)exp (—j j;m sin(27 franAt + 9m)> :

m

The DFT of the demodulated signal X;(k) = DFT[z4(n)] is calculated and DC
component is removed by putting zero value to X;(0), and several neighboring points
Xa(1), Xa(N), Xa(2), Xq(N—1), etc. Here the signal length is N = 129 and we remove
7 points. The filtered signal is obtained by the inverse DFT z(n) = IDFT[X4(k)].

Finally filtered signal is modulated in order to cancel frequency shifts in the remaining
components caused by the demodulation

A

T (n) = z¢(n) exp (j ?m sin(27 franAt + 9m)> .

m

Now we can repeat the estimation procedure with xz(n) = z,,(n) and estimate the
second component parameters. The results are presented in Figure 3(c) and (d). The
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Figure 3: Multicomponent signal. Estimation of the first component (a), (b); the
second component (c), (d); and the third component (e) and (f). Each component is
removed from the signal after the estimation, according to the described procedure,
prior to next component estimation.
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Figure 4: Nonsinusoidal modulation. Triangulary modulated signal (a), (b); Signal
with nonsinusoidal modulation and varying amplitude (c), (d).

estimated modulation parameters are
(2)

m

R 6.4 A A
f@ 5o~ 102, AD =354 9 =—-634°

m ™
In the next step, we filter the estimated component and proceed to the parameters
estimation for the last component. Results are given in Figure 3(e) and (f) and the
estimated parameters are
®3)

m

R 5 ~ ~
F@) = o~ 0.796, A® =985 9~ =—178.7°.
m

The agreement with the true parameters is high.

2.5 Nonsinusoidally modulated signals

The presented estimation procedure could be used even if the analyzed signal is
periodic, but not sinusoidally modulated. We will illustrate this application on an
example.

Example 4: Considered a triangularly modulated signal z;(¢) and nonsinusoidal
periodic modulated signal z5(¢) with a varying amplitude

t
x1(t) = exp (j/ 200 arcsin(cos(3.67ru))du)
0

xo(t) = A(t) exp (j /t 300 {"/arcsin(cos(?).ﬁﬂu))du)

0
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where )
Alt) =exp (- (552)")-

Although the proposed method is derived having in mind the sinusoidal modulation,
the results presented in Figure 4 clearly show that the applicability of the proposed
method is not limited to the sinusoidal modulation patterns only. The estimated
modulation parameters for signal z(t) are

. 112

fn=—""w~178, A,=414, 6, =6.1°
2
and for signal z5(t)
P 114 A .
fm=——=181, A, =545 60, =1.33".
2w

They agree with f,,, = 1.8 in the considered signals. The closest estimated sinusoids
are presented in this figure as well.

2.6 Analysis using partial data

Assume that not all signal samples is available. In this case, we can calculate the
spectrogram only at time instants/intervals when signal samples xz(n) are available.
This procedure will be illustrated with an example.

Example 5: Consider the signal defined in Example 3, and assume that samples from
intervals 20-28, 50-80, and 95-110 are missing. Since the total number of samples is
129 we have 43% of missing samples. The estimation results obtained by using the
available signal values are presented in Figure 5. Regions with unavailable samples are
presented with white color in this figure. The parameters estimated using available
samples are

64 : ;

o — g_ ~ 1401, AD =494, 9\ = 308°
™

(o 64 : ;

f@ =50~ 0086, A2 =350, 8, =583
s

o 64 : ;

f® — g_ ~0.796, A® =285 8 = _178.7°.
s

Even with a reduced number of available signal values, the presented method pro-
duced accurate estimates.
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Figure 5: Multicomponent sparse signal. First component estimation (a), (b); Second
component (c), (d); Third component (e), (f). Missing values in time-frequency
representations (a), (c¢) and (e) are presented in white color.
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2.7 Experimental data: rotating antenna in SAR

Radar returns were collected from a rotating antenna using a APY-6 radar in a SAR
scenario [2|. Using these data sets, the m-D features relating to a rotating antenna
were extracted. The m-D features for such rotating targets may be seen as a sinusoidal
phase modulation of the SAR azimuth phase history. The phase modulation may
equivalently be seen as a time-varying Doppler frequency.

Figure 6a shows the original SAR image and Figure 6b displays the zoomed in SAR
image between the range cells 115 and 130. The Doppler smearing due to the rotating
parts is often well localized in a finite number of range cells. It is reasonable to process
the Doppler signal for each range cell independently. Since the prior information
about the location of the target is known, the data at the range cells 123 and 124
were analyzed. The micro-Doppler toolbox, which is presented in Section 4 was used
to estimate the rotation rate of the antenna. Figure 7 illustrates the m-D parameter
estimation results. Figure 7a shows the rotation rate at range cell 123 and Figure 7b
shows the rotation rate at range cell 124 The estimated rotation rate is 4.8 seconds,
which is very close to the actual value of 4.7 seconds.

2.8 Experimental data: hovering helicopter

The experimental data used in the analysis that follows are of a hovering helicopter.
For a helicopter, the main rotor blades, the tail rotor blades and the hub have unique
signatures suitable for target identification [39-41]. Generally, radar returns from a
helicopter are back-scattered from the fuselage, the rotor blades, the tail blades and
the hub among other structures. The motion of the rotor blades depends upon the
coupling between the aerodynamics and the rotor dynamics. Each blade is a rotating
aerofoil having bending, flexing and twisting motion. The radar cross section of a
segment of the blade depends upon its distance from the centre of rotation, its angular
position and the aspect angle of the rotor [40]. For simplicity, the rotor blade can be
modelled as a rigid, linear and homogeneous rod rotating about a fixed axis with a
constant rotation rate.

The rotational motion of rotor blades in a helicopter imparts a periodic modulation
on radar returns. The rotation-induced Doppler shifts relative to the Doppler shift of
the fuselage (or body) occupy unique locations in the frequency domain. Whenever
a blade has specular reflection such as at the advancing or receding point of rotation,
the particular blade transmits a short flash to the radar return. The rotation rate of
the rotor is directly related to the time interval between these flashes. The duration
of a flash is determined by the radar wavelength and by the length and rotation rate
of the blades. A flash resulting from a blade with a longer length and a radar with a
shorter wavelength will have a shorter duration [1].

DRDC-RDDC-2014-R6 15



2000

1500

Doppler

1000

500

500 1000

1200

300

115 120 125 130
Range

Figure 6: Top - The original SAR image; Bottom - The zoomed in SAR image.
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Figure 7: Rotation rate of the antenna (a) at the range cell 123 and (b) at the range
cell 124.
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Figure 8: (a) Rotation rate of the main rotor blades and (b) Rotation rate of the tail
rotor blades.
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The helicopter employed in the experiment is hovering above the ground at a height
of approximately 60 m and at a range of 2.5 km from the radar. The main rotor
comprised five blades and the tail rotor consists of six blades. The m-D toolbox was
used to estimate the rotation rates of the main and tail rotor blades of the helicopter.
The rotation rate of the tail rotor blades is 1030 rpm (Figure 8a). The rotation rate
of the main rotor blades is 203 rpm for this helicopter (Figure 8b). Both estimations
are in agreement with the actual values.

3 Micro-Doppler removal in the radar
imaging analysis

The m-D effect appears in the inverse synthetic aperture radar (ISAR) imaging when
a target has one or more fast moving parts [2,5,7-9]. Similar effect appears in the
synthetic aperture radar (SAR) imaging, as well, [2,49].

In this report, we use the L-statistics based approach for the rigid body separation.
In order to remove the m-D effect, we perform the TF analysis within the coherent
integration time (CIT). In our previous approach [5], we used order statistics and
several TF representations with various windows. The obtained TF representations
were then used to make decision whether a component belongs to the rigid body or to
the fast moving target point. Here, we use only one window function in the analysis.
Order statistics is performed based on the spectrogram, while the rigid body signal
synthesis is done in the complex TF domain. This approach is very simple to use
and produces better results than the other approaches. It is also robust to the noise
influence, since it uses the L-statistics, being known as a robust signal processing
tool [51]. The L-statistics application to the complex STFT leads to a form of super-
resolution representation, as well. It can separate very close rigid body components,
even when that is not possible by using the standard Fourier transform (FT) over the
entire CIT. The proposed method can be easily adapted for efficient compensation of
a residual, uncompensated, rigid body acceleration in the presence of the m-D effects.

In order to improve the calculation efficiency, we have proposed a procedure to es-
tablish whether there is any target return in a considered range bin. Moreover, by
bearing in mind that in the ISAR/SAR analysis only some range bins may contain
the m-D effect, while most of the range bins are m-D free, in this report, we have
defined a criterion for detecting ranges which contain the m-D effects. The m-D
removal procedure could be performed only for these particular range bins.
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3.1 Time-frequency analysis and L-statistics

A simpler way to localize the signal behavior in shorter intervals, within the CIT, is
in applying a window function to the standard FT. The resulting short-time Fourier
transform (STFT) is defined as

STFT(t,Q) = / s(F)w(r — t)e I dr, (6)
or in a discrete form
M-1
STFT(m, k) = _ s(iyw(i —m)e 7>7HM, (7)
1=0

where w(1) is a window function used to truncate the considered signal. The squared
absolute value of the STFT is called the spectrogram. In most of the provided
examples, we will use a Hanning window. The window width is M,,, w(i) # 0 for
—M,/2 < i < M,/2—1. In our applications, the window is zero padded up to
M, the same number of samples as in FT, so that we have the same frequency grid
in the STFT as in the FT. Then, we can later easily reconstruct the FT, without
interpolation, with the concentration close or equal to the concentration of the original
FT. We know that, by using a lag window w(i) in the STFT, the concentration in
frequency is reduced, as compared to the original F'T. For example, if the lag window
width is M, then the concentration of a sinusoidal signal is reduced M /M, times,
i.e., the STFT-based ISAR/SAR image of a rigid body point (the main lobe of the
FT of a sinusoid) would be approximately M /M, times wider than the original FT
based image of the same reflecting point. We will also refer to this effect as: the
concentration being M /M, times lower in the STFT than in the original FT.

3.1.1 Restoring the high FT concentration from the STFT

The concentration could be restored to the original one by summing all the low
concentrated STFT (complex) values over m. Since we calculated ST FT'(m, k) with
the window of the width M, there are two possibilities for its summation: (a) For
all time instants 0 < m < M — 1, when the signal s(i) has to be zero-padded for
—M,/2 <i<Oand M < i< M+ M,/2—1; (b) For instants M, /2 < m <
M — M, /2, when zero-padding of s(i) is not used. Reconstruction formula, for the
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case when the signal is not zero-padded, is

M—M, /2
> STFT(m,k) = (8)
m=M, /2
M—-1 M—My/2
Zs(z) Z w(i —m)| e I2mk/M
i= m=M, /2
M-1

Z s(i)wy (i)e 2TRM = 5 (k).

(2

In the case when the STFT is calculated for each time instant (time step one in
the STFT calculation), the resulting window w; (i) is constant, w;(7) = const, for
M,—1<1:< M- M,, for any window. It means that during the most of the CIT
interval we have the normalized resulting window w (¢) being close to the rectangular
one, with a small transition at the ending M,, points. The FT of the window obtained
during the process of reconstruction produces a concentration very close to the full
range rectangular window case (i.e., no window). It means that we will be able
to reconstruct the F'T with a concentration close to the one in the original FT, by
using low concentrated STFTs, calculated with narrow windows. In this way, we will
restore the high concentrated radar image, although we used low concentrated STFT
in the analysis. The transition at the ending points of w (¢) can be easily overcome by
zero padding the analyzed signal s(i) with M, /2 samples on both sides, (as explained
before). Then, the pure rectangular window w1 (7) would be obtained, for any window
w(7). The analysis is not restricted to the step one in the STFT calculation. The
same resulting window would be obtained for a step equal to a half of the window
width (M,,/2) and a Hann(ing), Hamming, triangular or rectangular window. The
same is valid for steps equal to M, /4, M, /8, etc.

In order to explain how this mechanism of restoring the original concentration, by
summing low-concentrated images, works, consider s(t) = exp(jwot). Its FT is a
delta pulse S(£2) = 275(2 — wp). The STFT of this signal produces

STFET(t,Q) = W(Q — wp) exp(7(2 — wp)t). 9)
Let us now analyze the result of summing the STFT values over ¢:

For Q = wyq, constant values of W (0) will be integrated over an infinite time interval,
with the phase exp(j(© — wo)t) = exp(j0), producing [*° STFT(t,Q)dt — oo for
Q= wo-

For any other {2 not equal to wq, i.e., when Q = wy + 0, 6 # 0, we will have the
integration [ W (0) exp(j6t)dt = W(0) [~ exp(jft)dt = 0. Therefore, all values
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for Q2 # wy are averaged out to zero by summation of the low concentrated STFTs
over time.

The discrete form of (9), is

M—
S(k) = W (k — ko)e2mmk—ko)/M (10)

m=0

—_

with the same conclusions as in the continuous case. Values of S(k), when the signal
is not zero-padded, are close to (10).

3.1.2 Basic idea for the separation of a rigid body and fast
rotating part

The presented mechanism of restoring the original concentration of the F'T, in con-
junction with the knowledge of the TF behavior patterns of fast moving and rigid
scattering points, lead us to an algorithm for the m-D free, highly concentrated, radar
image. The rigid body and the fast moving points behave differently in the TF rep-
resentation of the returned radar signal, within the CIT. The rigid body signal is
almost constant in time (stationary), while the fast-varying m-D part of the signal is
highly non-stationary. This part of signal keeps changing its position in the frequency
direction.

For the illustration, let us assume that the signal is returned from one point of a
rigid body scatterer and one point of a fast rotating (m-D) scatterer. We analyze two
cases with different strengths of the m-D reflection. In the first case, the reflection
coefficient of the rigid body is o = 1, while the reflection coefficient of the fast
moving scatterer is o = 0.8. The STFT representation of the resulting signal is
shown in Figure 9(a). The second case is with a strong m-D, or = 15 and the same
op asin the previous case. The STF'T representation of this signal is shown in Figure
9(e). In both cases, the rigid body part is at a constant frequency for all ¢ within the
CIT, while the fast rotating part changes frequency. If we perform sorting over the
time axis, as in Figure 9(b,f), we will not change the result of the summation in (8)
since it is a commutative operation. By summing the STFT values over time, from
either of these two plots, presented in Figure 9(a,b) or Figure 9(e,f), we will get the
original FT of the corresponding signal Figure 9(c,g). Note that any value of o from
(and including the case without m-D) og = 0 up to og > op will not significantly
change the pattern.

The basic idea for separating the rigid body and the fast rotating part is in the sorting
of STF'T values of the returned radar signal along the time axis, within the CIT. Since
the rigid body return is stationary, the sorting procedure will not significantly change
the distribution of its values. However, the fast-varying m-D part of the signal is
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Figure 9: Simulated radar signals which correspond to a rigid body reflector with
op = 1 and a rotating reflector with reflection coefficient o = 0.8: a) Absolute value
of the STFT, b) Sorted STF'T values, ¢) The original FT, and d) The reconstructed
FT. Simulated radar signals which correspond to a rigid body reflector with og = 1
and a rotating reflector with reflection coefficient cr = 15: e) Absolute value of the
STE'T, f) Sorted STFT values, g) The original FT, and g) The reconstructed FT.
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highly non-stationary, occupying different frequency bins for different time instants
(in the case of flashes it exists for some time-instants only). Its existence is short in
time, for each frequency, over a wide range of frequencies. Thus, after sorting the
STFT along the time axis, the m-D part of the signal has strong values over a wide
frequency range, but for a few samples only. By removing several large amplitude
values of the sorted STFT, for each frequency, we eliminate most or all of the m-D
part of the signal. Summing the rest of the STFT values over time we will get the
rigid body radar image. The sinusoidal m-D pattern, presented in Figure 9, is just
an example of such a signal. This idea can be applied on any non-stationary signal
form. The m-D part of a signal is non-stationary by definition.

Let us consider a set of M (or M — M,, if the signal is not zero-padded) elements of
the STF'T, for a given frequency k,

Si(m) = {STFT(m,k),m=0,1,...,M —1}.

After sorting Sy(m) along the time, for a given frequency k, we obtain a new ordered
set of elements Wi (m) € Sk(m) such that |U,(0)] < |Ug(1)] < ... < |¥p(M —1)|. Of
course, the addition is commutative operation, so if we use the whole set, we get

Mi STFT(m, k) = Mi Uy (m) = S(k).

In the L-statistics form of this summation we will, for each k, omit M — Mg of the
highest values of WUy (m) and produce the L-estimate of S(k), denoted by Sy (k), as

Suk) = 37 W(m) (11)

where Mg =int[M (1 — Q/100)] and @ is the percent of omitted values.

To illustrate this procedure, we eliminated 40% of the top amplitude values of the
STFEFT from the previous example. In this way, we completely eliminated the m-D
component from the TF representation. We are left with 60% of the low amplitude
values of the STFT, that contain only the rigid body. The FT reconstruction is
performed based on these values only. The reconstructed F'Ts for the cases of a weak
and a strong m-D are shown in Figure 9(d,h), respectively. The FT of the rigid
body is in both cases successfully reconstructed by summing 60% of the sorted STFT
samples, remained after m-D separation. Note that the result is not significantly
influenced by the value of og, since the points corresponding to the m-D signature
are removed, meaning that their values are almost not important.

In the data analysis, this approach, based on elimination of a part of data, before
analyzing the rest of the data, is known as the L-statistics [51].
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Analysis of the Missing Values

Since we have eliminated some of the TF representation (TFR) values, we will analyze
the influence of incomplete sum in (8). This is the same theory like the L-statistics
theory applied to the noisy or non-noisy data, [51].

Assume that only points in m € D, are used in summation:

Sp(k)=Y_ STFT(m,k), (12)

meDy
where, for each k, Dy, is a subset of {0,1,2,..., M — 1} with Mg elements.

Within the framework of the previous analysis, it means that there will be a highly
concentrated component S(k) surrounded by several low-concentrated values

> mgp, STFT(m, k). Note that the amplitude of STFT(m, k) is M times lower
than the amplitude S(k), since S(k) is obtained as a sum of M values of the STFT.
In general, by removing let say (M — Mg) values in m, we will get one very highly
concentrated pulse, as in S(k), and (M — M) values of low-concentrated components
of the type STFT(m, k), being spread around the peak of S(k) and summed up by
different random phases. Only the peak value is summed in phase. Consider:

1. Case for k = ky corresponding to the position of the rigid body point: At this
frequency, all terms in the sum (10) are the same and equal to W(0). Thus, the
value of S7(k) does not depend on the positions of the removed samples. Its value is
Sp(ko) = MW (0).

2. Case for k = [ + ko, where [ # 0: Removed terms in (10) are of the form
x;(m) = W(l)e?2™m/M  They assume values from the set ®; = {W (1)e/2™/M m =
0,1,2,..., M — 1}, with equal probability, for a given [. The statistical mean of these
values is E{x;(m)} = 0 for | # 0, resulting in E{SL(l + ko)} = 0.

The resulting statistical mean for any k is
E{SL(k)} = MW (0)d(k — ko).

The higher order statistical analysis of this process could be performed in detail, but
it is out of the scope of this report. Here, the influence of the number of missing points
to the concentration of the reconstructed FT will be illustrated by an example, Figure
10. Here we consider a constant frequency signal, without m-D. Its FT is calculated
and presented in Figure 10(a). Then the FT is reconstructed based on 25%, 50% and
75% of the low amplitude values of the STFT for each k. We can see that even by
taking a small number of STFT points, we still keep a strong peak, since it is summed
in phase, Figure 10(b),(c),(d).
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Figure 10: The FT of a sinusoidal signal: (a) Original, (b) Reconstructed by summing
75% of the smallest STE'T values, for each k, (c) Reconstructed by summing 50% of
the smallest STFT values, (d) Reconstructed by summing 25% of the smallest STE'T

values.

Noise Influence

It is well known [51] that the L-statistics is a tool for robust time-frequency analysis.
The robustness comes from the fact that the L-statistics based calculation avoids
highest values, which are the most influenced by noise. Therefore, we may expect
that by using the L-statistics we will not degrade the radar imaging performance in
the case of noise. By using the L-statistics we will eliminate a part of the signal, that
is summed in phase in the F'T, but we will also eliminate the signal values that are
mostly corrupted by noise. Thus, with the elimination of the m-D we will improve
the overall performance in the noisy signal cases, as well. In the case of impulse noise,
we may expect significant improvement, even in the case without m-D, with a pure
rigid body. The effect of noise is statistically analyzed within the simulation study of
this report.

High-Resolution Property
Consider the L-statistics application on two very close rigid body points:

_ ,—J2(yi—Aypi)wptwo/c —j2(yBit+Aypi)wptwo/c
s(t)=ce +e

with a very small Aypg; so that in the FT of the signal S(€2), calculated over the entire
CIT, we can not distinguish these components. Since the resolution in the Doppler
direction is Rpepp = 27/T, it means 2Ayp; ~ 27 /1T..
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It is surprising, but if we use low concentrated STF'T and the proposed L-statistics,
we will be able to separate these components. The STFT of these components is

STFT(t, Q) =
W(Q + (yBi _ AyBi))e_the_j(yBi—AyBi)t
+W(Q + (?/Bz‘ + AyBi))e_the_j(yBi+AyBi)t

with normalized frequency € for 2wowpg/c = 1.

Note that the STFTSs of the components are phase shifted for Ap(t) = 2Aypt. Even
for small 2Ayp; ~ 27 /T. the phase shift changes are of the order Ap(t) ~ 27/T. x T...
It means that it could easily change, during the CIT, between 0 and 7 or even more.
Then, there will be time instants in |STFT(t,€)| when the individual STFTs are
summed in phase, i.e.,

when |STFT(t,Q)] =2 |W(Q+ (yg: — Ayg:)) + W(Q + (ypi + Ayg;))| - Then the sig-
nal components can not be separated. However, there will be also the instants in the
STFT when the components are with opposite phase,

|STFT(t,Q)] = |[W(Q+ (ygi — Aypi)) — W(Q+ (yp; + Ayg;))|, so that the signal
components are clearly separated. We can see that in the first case the values of
|STET(t,Q)| will be higher than in the other case. By using the L-statistics ap-
proach the higher values will be eliminated, while the lower values, that are well
separated, will remain. Thus, we may achieve high signal resolution by using the low
concentrated STFT and the L-statistics, even in the case when the separation is not
possible in the original F'T over the whole CIT.

3.1.3 Adaptive percentage of missing values

There are two possible approaches to establish the threshold for the elimination of
the m-D:

The first approach is to assume a fixed threshold for the entire ISAR/SAR image:
for example, removing Q[%] highest values for each frequency, by knowing that this
will not disturb significantly the obtained image.

A more sophisticated approach is to calculate the adaptive threshold for each range.
The adaptive threshold can be obtained based on the L-statistics. To use the L-
statistics approach, we will sort the STFT values for a given range and a given
frequency. If there is a m-D, then, after sorting the STFT values, there is a region of
an increase of the sorted STFT values, Figure 11 (upper part). Thus, if we sum the
sorted STFT values over frequency, we will get a function:

A(m) =) [W(m)]*. (13)
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Figure 11: Sorted STFT values, |Vi(m)|, with a colorbar (upper). The values of
A(m), obtained by summing the squared values of the sorted STF'T along the fre-
quency, with the adaptive threshold Ry obtained based on the average value of 10%

of its smallest values - thick horizontal line (lower).
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Now, we can find the reference level R, based on the mean of 10% of the low amplitude
M/10-1

samples, i.e., based on M /10 values of the sorted ¥ (m), Ry, = T}, /Z 10A(m)/M,
with T}, being a parameter, usually from 7}, = 2 to T}, = 10. For glxa,omple, The =2
means that we will use all the values in the sorted Wy (m) whose squared values are up
to, for example, 2 times greater than the mean of 10% lowest squared values. Then )
is found as the percent of A(m) below Ry. In the case when there is no m-D it means
that we will use all the values, since the stationary values are close to the mean of
the lowest values for all time instants. If there is a m-D then the value outside of
the stationary points will start to increase sharply and the summation will stop. The
results are not too sensitive to these values, since A(m) is a fast increasing function
when the m-D starts to appear, Figure 11 (lower part).

In our previous work [5], we have used the L-order statistics. In all phases of the
applications, we have used various order statistics of the absolute values of the STFT
with various window widths. Here, we use only one window function for the analysis.
Then, after sorting the absolute STFT values and defining the threshold @ (by simply
assuming, for example () = 50%, or calculating an adaptive threshold), we return back
to perform all the calculations in the complex STFT domain. In this way, we obtain
a very simple and efficient model for the calculation, while the results are improved
with respect to those obtained by the procedure proposed in our previous work.

3.1.4 Algorithm for the micro-Doppler effects removal

The simplest way to use the proposed method is in applying the L-statistics approach
to all range bins, with a constant threshold, for example @ = 50%. In this case the
m-D will be separated, while the rigid body will not be degraded. In the case of
impulse noise we will benefit from this procedure in each bin. Also, if there are close
rigid body components, then this approach will help to resolve them, as it is described
earlier. However, this way of calculation increases the calculation complexity.

In radar data analysis, only a part of the range bins may contain the m-D, while most
of them will be m-D free. We can improve the calculation complexity by defining a
procedure to avoid processing of the range bins where we can conclude that there is
no target return or there is no m-D part of signal. If there is an m-D point, then
a constant or adaptive threshold for the L-statistics application in the m-D removal
could be used in order to separate the m-D, while most of the rigid body part of
signal is preserved. If there is no m-D in the considered range bin, then processing
for this range is not necessary. If the FT is already well focused, or if there is no
returned target signal in the considered range bin, then the FT can be used as it is.
Of course, this classification procedure is optional, and we will not lose anything in
the radar image quality if we apply the presented method in some bins with already
focussed image or where there is no target return. Thus, the thresholds in the next
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procedure may be chosen in quite a conservative way, to be sure not to miss any bin
with m-D, allowing false m-D detections.

The range bins classification procedure will be presented as an algorithm.
The algorithm consists of the following steps:

Step 1: Detect whether there is a returned target signal in the considered range bin,
by using
ma{|S(k)[} > <, (14)

where ¢ = 0.02max{|S(k,1)|} in the noiseless case or

e = max{0.02max{|S(k,1)|},2/0/M} in the presence of noise (here S(k, 1) is the 2D
FT of the received signal, i.e., full radar image matrix for all ranges and cross-ranges,
while S(k) is the radar image for a given range bin). The standard deviation o of
noise in the radar image, for a given range bin, can be estimated as [53]:

A

re

_ median{|Re{S(k)} —Re{S(k—1)}|, k=2,.., M}
0.6745v/2 ’

(15)

for the real part of S(k). The same applies for the imaginary part. If there is no
target in the returned signal, do not perform the following steps and take S(k) as the
radar image for the considered range bin. If there is a target signal, continue.

Step 2: Detect whether there are any m-D effects in the considered range bin:

_ max{|S(k)[}

= mean{|S()|} ~

The previous relation is the simplest concentration measure. In the case of a highly
concentrated signal, R is close to M, while for a low concentrated signal, this value
is close to 1. We say that the signal is well concentrated (rigid body only) if R > 10.
This threshold was successfully tested for various scenarios and multi-component
signals. If the signal is well concentrated take its FT S(k) as the radar image for the
considered range bin. If the signal is not well concentrated, continue.

Step 3: Remove the m-D effects and reconstruct the F'T of the reflectors that corres-
pond to the rigid body in the considered range bin. Remove the values of the STFT
that are higher than the threshold and for each frequency sum the rest along the
time. Take the obtained FT Sp(k) (12) as the radar image for the considered range
bin.
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Figure 12: (a) The STF'T of a signal consisting of one rigid body component and four
sinusoidally modulated components. (b) The sorted STFT of the same signal. (c)
The original FT of the signal. (d) The FT of rigid body, reconstructed by summing
the STF'T values remaining after sorting and eliminating samples that correspond to
the m-D effect.

3.2 Results

Ezxample 1: The proposed method is tested on a signal with one rigid body point and
four sinusoidally modulated components (used to model rotating reflectors),

s(m) = UBZGXp {jysim} (16)

P
+op Z exp {j [ngim + ARi sin(wRim + QDZ)]} 5

i=1
with K =1, P=4,0p=1,0r =3, yp1 = 0.4, Ar; = [96, 48, 64, 24|, wr; = 7/128,
Yro; = ™ and ¢; = 0, for = 1,2,3,4. The STFT of this signal is presented in Figure
12(a). The m-D, although moderate, significantly covers the rigid body, i.e., the part
of the constant frequency component is almost invisible in the sinusoidal patterns.
The sorted STFT is shown in Figure 12(b). Then, the highest STFT values are
removed, for each frequency in the reconstruction phase. A constant threshold, with
Q@ = 60% is used here. The FT reconstructed from the remaining STFT samples is
shown in Figure 12(d). The rigid body is successfully reconstructed in the presence
of the m-D. The original FT of the analyzed signal is given in Figure 12(c).

Ezxample 2: Here, we analyze a signal with 10 components: K = 5 components with
constant frequency (used to model rigid body reflectors) and P = 5 sinusoidally
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Figure 13: (a) The STF'T of a signal consisting of five rigid body components and five
sinusoidally modulated m-D components (b) The sorted STFEF'T of the same signal. (c)
The original FT of the signal. (d) The FT of rigid body, reconstructed by summing
the STF'T values remaining after sorting and eliminating samples that correspond to
the m-D effect.

modulated components (used to model rotating reflectors), (16) with: op =1, o =
15, yp; = [1.97, 1.95m, 27, 2.057, 2.17|, Ag; = [150, 300, 200, 440, 200], wg; = [7/256,
/512, w/256, 7/512, w/256|, yro; = 0 and ¢, = [0, —7/3, 7/6, —27/3, 0], for
1=1,2,3,4,5, M = 1024 and M, = 64. The STFT of this signal is shown in Figure
13(a). The constant components, that correspond to the rigid body, are not well
separated in the TF plane. Moreover, they are covered by the sinusoidally modulated
patterns which represent the m-D effects of the rotating reflectors. If we sort the
STFT values along time axis, then the representation of the rigid body parts does
not change, since it is constant during the whole CIT, Figure 13(b). On the other
hand, the fast rotating parts occupy only a small time intervals over a wide region of
frequencies. They lie in high value regions of the sorted transform. Thus, they will
be eliminated by removing the highest STFT values, for each frequency. An adaptive
threshold, with 7}, = 5 is used here. The results are not sensitive to the value of
Thr- The reconstructed FT, obtained by summing the rest of the STFT (12) along
the time is shown in Figure 13(d). We can clearly see five peaks that correspond to
the five rigid body reflectors. The original FT is shown in Figure 13(c). It cannot be
used even to determine the number of components in the analyzed signal.

Helicopter Data Analysis

Ezxample 3: In this example, we first present a new simulation approach to the data
of a German Air Force Bell UH-1D Helicopter known also as ‘Iroquois’ presented in [5].
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Here, the simulation is performed according to the variable flashing reflection
coefficients, rather than just by using a mathematical form that would produce
the data as in [6]. Several effects are emphasized in the TFR Figure 14(a). The
stationary patterns along the time-axis correspond to the rigid body reflection.
The motion of two main blades is modeled by two rotating reflectors, producing
sinusoidal FM signals with a large magnitude in the frequency direction, (18). The
main rotor flashes are simulated by signals producing lines that connects extreme
points of the sinusoidal FM signal, along the time axis. The smaller pulses that can
be seen on the right-hand side of Figure 14(a) correspond to the tail rotor flashes,
and they are simulated here by taking into account the physical meaning of its
appearance. Namely, these flashes correspond to the periodic alignment of the main
and tail rotors to maximally reflect the radar signal when they are normal to the
line-of-sight. Therefore, we use here an angle dependent reflection coefficient

o(t) = exp(—30 [sin(27t/ Trot) ), (17)

where the reflection takes value 1 when ¢ = kTg,/2 and |sin(27t/Tget)| = 0, while for
other ¢, 30 |sin(27t /Trot)| assumes high values and the reflection coefficient is small.
Note that other effects that can be observed in a radar image, including multi-path,
are not considered here.

The simplified model of the reflected UH-1D signal can now be written as

S(t) = l‘Rjg(t) + xROT(t) + xFLiM(t) + IFLiT(t),

where zrr(t), xror(t), rr m(t) and xpg, (1) represent signals caused by the rigid
body, rotation of the main rotor, and the main and tail rotor flashes, respectively.
The signal is considered within the interval of 400 ms, sampled with a rate of At =
1/48 ms. Four sinusoidal components, caused by the rigid body, are at the frequencies
—10.3kHz, —2.5kHz, 2.3kHz and 2.7 kHz. Two components at —0.4 kHz and 0.4 kHz
correspond to the modulated time tones commonly added to the data tape [56]. The
sinusoidal FM signals, corresponding to the rotation of the main rotor blades, are
modeled as

xROT(t) — UROT[€j27rAROT sin(2n7t/TroT) (18)

—j2rAror sin(2nt/Tro
e rsin(2rt/ Tror)]

where oror = 10, Tror = 175ms and Aror = 529.19. The main and tail rotor
flashes are modeled as

128

kE+64 _sosinon
SL’FL_M(t) =25 Z T8€ 30|sin(27t/175)|
k=1

27t
X c0s(25.98k sin(%)),
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Figure 14: (a) The STFT of a simulated signal of a German Air Force Bell UH-1D
Helicopter. (b) The sorted STF'T of this signal. (c) Original F'T of the signal. (d) The
FT of the rigid body, reconstructed by summing the lowest absolute STF'T values.
(e) The F'T of the rigid body, reconstructed by the proposed method.

and
128

vrr 7(t) = 2.5 Z o~ 30lsin(2mt/35.8)| ,(j(2.66k sin(47t/35.8)))
k=64
The signal is corrupted by a moderate Gaussian noise. To compare our simulation
with the real one (for the m-D and rigid part values ratio) refer to [6,56].

The proposed algorithm for the rigid body separation is applied to the simulated
helicopter signal. The sorted STFT is shown in Figure 14(b). We can see that the
STFT values corresponding to the rotating parts are in the high value region. The
reconstructed FT is shown in Figure 14(e). All 5 reflectors that correspond to the
rigid body are successfully recovered. The original FT is presented in Figure 14(c),
while the reconstructed FT obtained by summing the absolute values of the remaining
STFT samples is presented in Figure 14(d).
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Figure 15: (a) The STFT of a signal consisting of two very close components with
constant frequency and one sinusoidally modulated component. (b) The sorted STFT
of the same signal. (c) The original F'T of the signal. (d) The FT of rigid body,

reconstructed by summing the lowest STFT values.

High-Resolution Analysis

Example 4: Two very close rigid body reflectors in the presence of m-D effects are
simulated in this example
S(m) _ e—j2017rm/M + 6—j2057rm/M + 106j58005(27rm/M)’

where M = 256 samples are used. The window with M,, = 32 zero-padded to M
is used for the STFT calculation. The STFT of the analyzed signal is presented on
Figure 15(a), while the sorted STFT is presented on Figure 15(b). It can be seen in
Figure 15(a), that there are time instants when the STFTs of the close components
are summed with opposite phase, and they appear as separated. On the other hand,
when the close components are summed in phase, they are not separated. Moreover,
as it can be seen from the sorted STFT, presented in Figure 15(b), when the STFTs
are summed in phase, the resulting STF'T is higher. Consequently, by removing the
highest values of the STF'T, the remaining lower values are well separated; thus, the
close components are separated. The F'T reconstructed by summing over time 50% of
lowest samples of the STFT, is shown in Figure 15(d), while the original FT is shown
in Figure 15(c). We can see that the separation of the close components is achieved
by the proposed method, although it is not possible in the original FT (the distance
between two maxima positions is biased).
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Figure 16: Mean absolute error as a function of noise variance calculated for the case
of one rigid body reflector without m-D. The solid line corresponds to the proposed
method, while the dashed line corresponds to the full F'T.

Noise Influence Analysis

Example 5: One stationary reflector and one m-D reflector are considered. Complex
valued, white Gaussian noise &(t), with variance o2, is added

s(m) _ 6—j0.757rm + O_RejSSCos(Zwm/256) + S(t),

where op is the reflection coefficient of the m-D reflector. The noise variance is
varied within a wide range 0 < ag < 72 (from the case without noise up to the
case when noise dominates), with step 1. For each variance value from this range,
1000 Monte Carlo simulations are performed. In each realization, we have found a
position of the maximum in the L-statistics based estimate of the FT, Sy (k). Then,
the error is calculated as a difference of this position and the true signal frequency.
The mean absolute error is calculated for each variance for 1000 realizations and the
mean absolute error is plotted for various noise variance values. For the rigid body
FT reconstruction we used, for each frequency, 50% of the smallest STFT values in
the L-statistics summation.

We start with the case of pure stationary point or = 0, to see how the L-statistics
approach, with 50% of values, influences the results. It is well known that the FT
transform is theoretically the best (ML) estimator for a pure sinusoid in Gaussian
noise. The corresponding mean absolute error is depicted in Figure 16. The solid line
corresponds to the proposed method, while the dashed line corresponds to the full
FT. The FT is well reconstructed with the proposed L-statistics based method and
the estimation results are not degraded with respect to the full FT, in this simple
case, when the FT is the ML estimator.

We have analyzed noise influences in the case of o = 5, as well. For the noiseless case,
the STFT is shown in Figure 17(a), while the sorted STFT is shown in Figure 17(b).
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The original FT is presented in Figure 17(c). The FT reconstructed by summing,
for each frequency, 50% of the lowest STFT samples is shown in Figure 17(d). The
same plots for the case of 02 = 4.5, SNR = —6.53dB are shown in Figure 17(e-h).
The signal to noise ratio (SNR) is calculated as the rigid body part of the signal
to the noise ratio, in all cases. We can see that the proposed method successfully
reconstructs the FT of the rigid body in the presence of m-D and noise.

The mean absolute error of the proposed method and the original F'T is shown in
Figure 17(i). The proposed method does not only reconstruct the FT successfully,
but also eliminates the m-D effect and outperforms the original FT, whose estimation
performance is degraded by the m-D effect.

Example 6: We analyzed one more case of one stationary reflector and one m-D
reflector in the presence of noise. Here, the m-D reflector is stronger and closer to
the stationary one. The corresponding signal is of the same form as in the previous
example, but with oz = 10, while the rigid body reflector signal component is at the
frequency fp = 0.125 Hz. The same statistical analysis and reconstruction procedure
as in the previous example are performed.

For the noiseless case, the STFT is shown in Figure 18(a), while the sorted STFT
is shown in Figure 18(b). The original FT is presented in Figure 18(c). The FT
reconstructed by summing, for each frequency, 50% of the lowest STFT samples is
shown in Figure 18(d). The same plots for the case of 62 = 4.5, SNR = —6.53dB
are shown in Figure 18(e-h). We can see from Figure 18(d) and Figure 18(h) that
the performance of the proposed method does not degrade even in the case of strong
m-D reflector positioned close to the rigid body reflector; in this case, the stationary
and m-D components are crossing in the STFT, Figure 18(a) and Figure 18(e). The
proposed method continues to successfully reconstruct the FT of the rigid body in
the presence of noise, Figure 18(h), while the FT is not even able to indicate that
there is a rigid body reflector, at all, Figure 18(g).

The mean absolute error of the proposed method and the original FT are shown
in Figure 18(i). From the presented statistics, we can confirm that, even in the
presence of noise and close reflectors with strong m-D effects, the proposed method
successfully reconstructs the FT of the rigid body, while the original FT completely
fails to indicate the rigid body existence.

Non-Compensated Rigid Body Acceleration

Ezxample 7: In this case an accelerating rigid body target is considered and examined.
The received radar signal that corresponds to an accelerating target in the ISAR
systems is a linear FM signal. Similarly, in SAR systems the target motion may
induce linear frequency modulation in the received radar signal [9]. Therefore, we
simulated three rigid body reflectors as three linear FM components with the chirp-
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rate a. In order to show that our algorithm will not remove only the m-D induced
by vibrating and rotating targets, here we have also used a more complex form of
the m-D. In this example, we will show that the algorithm is robust to the effects of
acceleration.

The STFT of the analyzed signal is presented in Figure 19(a). We can clearly see
that, as a result of the acceleration, the TFR of the rigid body part of the signal is
not stationary during the time. Consequently, it is difficult to separate it from the
m-D in the sorted STFT, Figure 19(b). Namely, if we perform the m-D separation by
removing 50% of the highest STFT samples, as we did in the examples where there
was no need for the motion compensation, we would reconstruct the F'T of the rigid
body as presented in Figure 19(d). Here, we have removed a significant part of the
rigid body points, as well.

In the analysis of the rigid body with uncompensated acceleration, we should first
compensate the remaining acceleration. This is not possible in the original signal,
since the m-D signatures prevent us from properly compensating the remaining ac-
celeration. However, the application of the proposed method for the m-D removal

can solve this problem, as well. We will use the Local Polynomial Fourier Transform
(LPFT)

LPFT(t,9) = / s(F)w(r — e @ o) g (19)
instead of the STFT, where the term exp(—ja7?) is used to compensate the linear fre -
quency modulation of the rigid body part of the signal, LPFT(t,Q) = FT{s(7)e w(Tz—
t)}. The parameter « is not known in advance, but we know that it can take val
ues from a set A = [—max, Omax|, Where auay is the chirp rate corresponding to the
maximal expected acceleration (positive or negative), [57]. In this example we used
A =[—-2:0.25:2]. Now, & can be estimated as the value from the set A for which we
obtain the highest concentration of the reconstructed rigid body (compensated FT)
based on the LPFT and the L-statistics, with, for example, @ = 50%. The recon-
structed FT, by using 50% of the lower LPFT values, will be denoted by Sy (k) .
Its concentration is calculated using the time-frequency concentration measure [58],

H(a) = <Z \SL,a(k‘)ll/p) : (20)

k=0

with p = 1. The LPFT, calculated with the estimated optimal value of & = 1.25,
which results from H(«), is shown in Figure 19(e). The linear frequency modulation
is compensated by & in (19). Thus, with optimal & we have components with almost
constant frequency in the TFR representation of the rigid body reflectors. In this
way, we have successfully reconstructed the rigid body and removed the m-D part,
as it is presented in Figure 19(h). The procedure is not too sensitive to é&. Very good
results are obtained with neighboring values & = 1.0 and & = 1.5.
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Note, that it would be impossible to estimate the chirp-rate & from the original signal,
without employing the proposed algorithm for the m-D removal.

Real Data Application

T
- <
° -
§ — > "Qé
- -
- (a) [ S . |(b)
frequency frequency
Q Q
.| ]
E E
s )
: :
(c) (d)
0 50 100 150 200 250 0 50 100 150 200 250
—
w >
° -
£ — 5
- -
o (e) | ol S s SRR (D
frequency frequency
(] Q
< <
E E
= a.
: :
(€9 (h)
0 50 100 150 200 250 0 50 100 150 200 250
frequency frequency

Figure 19: Accelerating rigid body with a complex form of the mD. (a) TFR of the
signal without motion compensation. (b) Sorted TFR of the original signal. (c) Ori-
ginal FT of the analysed signal. (d) Reconstructed F'T of the accelerating rigid body
without motion compensation. (e) TFR of the signal after motion compensation. (f)
Sorted TFR of acceleration compensated signal. (g) The FT of the original signal
with motion compensation. (h) Reconstructed FT of the accelerating rigid body with
motion compensation.

Ezxample 8: The proposed algorithm is tested on real data in this example. The
examined data were collected using an X-band radar operating at 9.2 GHz, [4]. The
first real data represent three corner reflectors rotating at approximately 60 RPM
(rotation per minute) and the rigid body observed by the radar with 7,, = 1kHz.
The STFET of the returned signal, for the given range bin, is shown in Figure 20(a).
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Figure 20: Real radar data corresponding to a rigid body and three corner reflectors
rotating at ~ 60 RPM (a—d). (a) the STFT. (b) Sorted STFT. (c) The original FT
and (d) the FT reconstructed by summing over 50% of the lowest STFT samples.
The same procedure is repeated for real radar data corresponding to a stronger rigid
body and two corner reflectors rotating at ~ 40 RPM (e~h). A logarithmic amplitude
scale is used in subplots (g) and (h).
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After sorting the STFT over time Figure 20(b), the constant frequency component
corresponding to the rigid body becomes more visible, since the time varying fre-
quency content is spread over many frequencies, for each frequency bin. The rigid
body is separated from the m-D and its FT is successfully reconstructed by using
50% of the lowest STFT values, as shown in Figure 20(d). If we compare it to the
F'T of the original signal, Figure 20(c), we can see the improvement in the rigid body
presentation.

In the second example, the real radar data corresponding to two outside corner re-
flectors, rotating at approximately 40 RPM (all facing radar) with rigid body, are
analyzed. The same radar as in the previous example is used, while the reflectivity
of rigid body is much higher than those of the rotating reflectors. The STFT repres-
entation of the observed signal is shown in Figure 20(e). The sorted STFT is shown
in Figure 20(f). The original FT is shown in Figure 20(g). The reconstructed FT,
obtained by summing 50% of the lowest STFT values is presented in Figure 20(h).
We have successfully removed most of the m-D. Moreover, we may use the removed
STFT samples in order to estimate features of rotating reflectors. Here, we have used
a logarithmic scale to present the reconstructed values, since the m-D values were
very low.

4 Micro-Doppler toolbox

The micro-Doppler toolbox is a set of functions for the analysis of m-D in radar return
signals. Two approaches are implemented.

e [-statistics is used in order to separate the m-D and the rigid body from the
analysed range bin.

e Micro-Doppler parameter estimation is performed in order to estimate the m-D
frequency, amplitude and phase. The parameter estimation method based on
the inverse Radon transform is developed. The developed method is capable to
detect m-D parameters even in the case of multicomponent m-D signal.

e The toolbox is capable to deal with one-dimensional (1D) and two-dimensional
(2D) signals. If the 2D signal is analyzed, a procedure for detection range bins
with possible m-D is implemented.

e The toolbox offers link to the Time-Frequency Analysis toolbox in order to
provide highly concentrated time-frequency representation of the analyzed sig-
nal.

Beside core functions for L-statistics and inverse Radon transform-based parameter
estimation, the toolbox contains Virtual Instrument and Demo.
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4.1 Files and installation

This toolbox has six program files:

L _statistics.m The function takes single range bin signal (in time domain) and
performs separation of rigid-body and m-D parts of the analyzed signal. For
more information type help L_statistics in command line.

MD _iradon.m This function estimates parameters of m-D component. It is suit-
able for single-component m-D signals. In multi-component signals, the m-D
function estimates parameters for one component only.

MD _iradonMC.m This function estimates parameters of m-D in multi-component
case. After the estimation of parameters, the estimated component is removed
from the analyzed signal and the estimation procedure is repeated for the next
component.

MD VI.m Virtual Instrument for m-D analysis.
MD demo.m Demonstration of core functions usage.

STFT TFR.m Short-time Fourier transform calculation. This function is part of
the Time-Frequency Analysis toolbox.

SM_ TFR.m S-method calculation. This function is part of the Time-frequency
Analysis toolbox.

test mat file.mat Matlab file with 1D and 2D data variables. This file is used
for testing the External data 1D and External data 2D functionality.

To install the toolbox, copy all files in the working directory. Alternatively, files can
be copied in the directory that includes MATLAB path.

4.2 Virtual instrument

e Virtual Instrument is started with command MD_VI. The main screen is dis-
played in Figure 21.

4.2.1 Main screen

e The main screen is divided into three parts. The left part is dedicated to the
definition of the input data. The center part deals with L-statistics as a method
for separating m-D and rigid body parts of the analyzed signal. The right part
is for the m-D parameter estimation.
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Figure 21: Virtual Instrument — main screen
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e The input data can be simulated signals, 1D external data or 2D external data.

e If example signals are selected, the user can choose one of six predefined data
sets, where Example signals 1-4 and Example signal 6 are 1D data and Example
signal 5 is 2D data.

e When the example signal is selected, the ToolTip with explanation of the chosen
signal is displayed if the user hold the mouse over the example list.

e In the 2D data case, the edit box with range-bin selection and the button for
search of m-D range bins are enabled.

e When the user select the data, it is allowed to plot TF representation of the
selected data.

e The pulse repetition frequency can be defined in the lower part of the left side
of the Virtual Instrument.

o If 1D external data is selected, the user can select the data format (time do-
main or frequency domain) and load the data from external MATLAB file as
presented in Figure 22.

e [f variable ¢ is detected in the input file, ¢ is used as input data. Otherwise,
the user can choose 1D variable from the data file to use it as input data.

e When 2D external data is selected (Figure 23), the user has choices as in the
previous case except the user can now transpose the input data if the range bins
are not in rows, and the range bin should be selected prior to further analysis.

e In this case, if the variable ¢ is not found in the selected MAT file, the user can
select 2D variable that contains radar data.
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Figure 23: Load 2D external data

4.2.2 Time-frequency data representation

e Click on the TF representation button that gives the TF representation of item
the selected data. Example 4 is presented in Figure 24. The S-method with
L = 2 and the appropriate time domain window is used in this example.

4.2.3 L-statistics

e The middle part of the Virtual Instrument screen (Figure 21) is dedicated to
L-statistics.

e The user can select the window type and window length (or determine the
window length automatically according to concentration measures).

e In the second step, the user can define thresholds for the m-D and rigid body
parts separation or can choose adaptive threshold.

e In the third step, the user can define the time-step for the STFT or use auto-
matically determined time-step.
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Click on the Analyze data button provides results in a form similar to Figure
25.

The upper left subplot is the TFR (time-frequency representation) of the ana-
lyzed data. The sorted values of the TFR along with threshold(s) are presented
in the upper right subplot.

The Fourier transform of the original signal and the rigid body part are presen-
ted in the lower left two subplots.

The lower right subplot is the TFR of the m-D part of the analyzed signal.
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Figure 24: Time-frequency representation of the analyzed data

4.2.4 Micro-Doppler parameter estimation

The third part of the Virtual Instrument is dedicated to the m-D parameter
estimation based on the inverse Radon transform.

The user can select between the single or multi component case.

Furthermore, the user can give expected number of periods within the analyzed
image or define the period range.

In cases when the m-D signal is not centered around the middle cross-range bin,
the user can define the cross-range shift or chose the shift automatically.
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e (lick on the Estimate m-D button when single component m-D is selected; this
gives results as illustrated in Figure 26 and Figure 27.

e Figure 25 presents the TF representation of the analyzed data along with es-
timated m-D (black line).

e Estimated m-D parameters (Rate, Amplitude, Phase and the number of peri-
ods) are given in the message-box presented in Figure 27.
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Figure 25: L-statistics analysis
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Figure 26: Micro-Doppler parameter estimation results

E ztimated parameters:

m-D rate [1/g] 097217

-0 normalized amplitude ; 0.85319
m-01 initial phaze [deg] : -119.5785
Mumber of penads ; 1.0016

| o

Figure 27: Micro-Doppler parameters
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Figure 28: Micro-Doppler parameter estimation results — multicomponent case —
second analyzed component
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Figure 29: Micro-Doppler parameters for second component in multi-component case

When the multicomponent m-D is selected, the search procedure is repeated in order
to detect all m-D components. Results are presented in Figure 28 for the second com-
ponent in the analyzed signal. Parameters of the analyzed component are displayed

and the user can choose to search for another component or to stop analysis (Figure
29).

4.2.5 2D data analysis

e If 2D data is analyzed, the user can activate the search for m-D bins resulting
in Figure 30. Here the user can select the detected range bin from the list on
the right and go back to the Virtual Instrument to analyze the selected range
bin.

4.2.6 Demo

e The usage of core functions L _statistics, MD iradon and MD irdonMC is
demonstrated with demo program as presented in Figure 31.

4.3 Time-Frequency Toolbox

The time-frequency analysis toolbox is a set of basic functions used in other toolboxes
such as SAR/ISAR toolbox and micro-Doppler toolbox. However, the usage of this
toolbox is not limited to the support to other toolboxes. One can use this toolbox in
order to get the time-frequency representation of an arbitrary input signal.
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The toolbox provides two time-frequency methods: short-time Fourier transform
(STFT) and S-method (SM). A variety of options are added to the core functions,
allowing the user, for example, to select the window with constant width or auto-
matically determine the window width in STFT method and use constant $L$ or
adaptive S-method. Most of the options are demonstrated by example signals with
file TFR_demo .m.

4.3.1 Files and installation

The toolbox has four program files:

STFT TFR.m
SM_TFR.m
ShowData.m

TFR _demo.m

To install the toolbox, copy all the files in the working directory.

4.3.2 Demo

The main toolbox window is presented in Figure 32. The user can select an example
signal by using the list on the left. Thereafter the appropriate STFT command should
be chosen and finally the S-method command should be selected on the right part.

The user can now click for STFT or S-method calculation and obtain the results as
presented in Figure 33 for STFT and Figure 34 for S-method.

4.3.3 Advanced visualization

The advanced visualization options are invoked by typing ShowData (SM) at the MAT-
LAB command line for S-method or ShowData(ST) for STFT. The result is presented
in Figure 35.
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Figure 32: Time-frequency analysis toolbox demo.
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Figure 33: Short-Time Fourier Transform of the analyzed signal.
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5 Conclusion

A method for estimation of the parameters of sinusoidally modulated signal is in-
troduced. The proposed method is based on the inverse Radon transform and the
concentration measures. It is shown that proposed method provides promising estim-
ation and decomposition results for monocomponent and multicomponent signals.
The noise and interferences influence upon the estimation procedure is considered.
It can be concluded that the proposed method is very robust to the noise and other
interferences. We have also shown that the results obtained by the proposed method
are meaningful even in cases when the analyzed signal is periodic but not sinusoid-
ally modulated. It can be used to estimate the parameters of periodic extension of a
non-periodic time-frequency patterns and partially available data as well.

The m-D effect appears in the ISAR/SAR images in the case when there are fast
moving reflectors in the observed scene. The m-D can severely decrease the quality
and readability of the obtained radar image. Its detection and removal are very
important for obtaining a focused image of the rigid body. In the report, an algorithm
for the m-D removal and reconstruction of the rigid body image are proposed. It is
based on the L-statistics. Although the L-statistics are already applied by the authors
for a similar purpose, the algorithm proposed here is simpler and produces better
results. The reconstruction is performed by using only one complex STFT, rather
than using several STFTs (with absolute values) and order statistics combination,
as it was done in the previous work. Since the proposed algorithm is based on
the L-statistics, being a tool for robust signal analysis, it is robust to the effects of
noise. Also, it can behave as a high-resolution algorithm, since it can separate close
rigid body points. In order to improve the computational efficiency, an adaptive
threshold is used to distinguish among STFT samples that correspond to the rigid
body and moving parts. Moreover, two additional thresholds are incorporated in the
algorithm. The first threshold detects whether there is a returned radar signal in a
range bin, while the second threshold detects whether there exist m-D effects in a
range bin. Consequently, the procedure for the m-D extraction could be performed
only for the range bins where the m-D effect is detected; that could lead to the
overall computational savings. Through the examples, it is shown that the proposed
algorithm successfully separates the rigid body and the m-D effects.

Based on L-statistics, spectrogram, and inverse Radon transform, a radar data ex-
ploitation Matlab toolbox was developed for classifying air and land targets. This
toolbox will scan and search any M-D activity in the desired area of the SAR/ISAR
image. The toolbox will have three options; 1) Focus the stationary target if there
is no M-D, 2) Focus the target after removing the M-D, and 3) extract the M-D
and determine the motion parameters such as rotation/vibration rate, initial phase,
and amplitude of the stationary and moving targets. The toolbox was tested and
validated against a variety of simulated and measured targets.
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